

Mastering Content and Skills through INQUIRY (Establishing the purpose of the Unit): What will students learn?

Students may be surprised to learn that there is variability in slope. In their previous courses, the slope of the line of best fit does not vary for a particular set of bivariate quantitative data. In this unit, students learn how to construct confidence intervals for and perform significance tests about the slope of a population regression line when appropriate conditions are met.

GA DoE Standards
Standards
 9.1 Introducing Statistics: Do Those Points Align? 9.2 Confidence Intervals for the Slope of a Regression Model 9.3 Justifying a Claim About the Slope of a Regression Model Based on a Confidence Interval 9.4 Setting Up a Test for the Slope of a Regression Model 9.5 Carrying Out a Test for the Slope of a Regression Model 9.6 Skills Focus: Selecting an Appropriate Inference Procedure
Concepts/Skills to support mastery of standards
 Identify and interpret statistics when doing inference for slopes Use a simulation to estimate a P-value when performing a significance test for slope Construct and interpret a confidence interval for the slope <i>B</i> of the population regression line Perform a significance test about the slope <i>B</i> of the population
Vocabulary

Simulation		Explanatory Variable		Response Variable	Least Square Regression Line	
Linear		t-interval		t-test statistic		
·						
Sampling distributions for simple linear regression:						
Parameter	Parameters of Sampling Distribution			Standard Error* of Sample Statistic		
$\mu_{b} = \beta$	σ_b where σ_x	$= \frac{\sigma}{\sigma_x \sqrt{n}},$ $= \sqrt{\frac{\sum (x_i - \overline{x})^2}{n}}$	where and s _x	$s_b = \frac{s}{s_x \sqrt{n-1}},$ $s = \sqrt{\frac{\sum (y_i - \hat{y}_i)^2}{n-2}}$ $= \sqrt{\frac{\sum (x_i - \overline{x})^2}{n-1}}$		
Essential Questions ow can there be variability in slope if the slope statistic is uniquely determined for a line of best fit? /hen is it appropriate to perform inference about the slope of a population regression line based on sample data?						
	Linear Linear tions for simple line Parameters $\mu_{b} = \beta$	Linear Linear tions for simple linear regression: Parameters of Sampling Dis $\mu_{b} = \beta$ $\sigma_{b} =$ where $\sigma_{x} =$ slope if the slope statistic is uniquely determ	tions for simple linear regression: Parameters of Sampling Distribution $\mu_{b} = \beta$ $\sigma_{b} = \frac{\sigma}{\sigma_{x}\sqrt{n}},$ where $\sigma_{x} = \sqrt{\frac{\sum(x_{i} - \overline{x})^{2}}{n}}$ Essential Question	Linear t-interval tions for simple linear regression: Parameters of Sampling Distribution $\mu_b = \beta$ $\sigma_b = \frac{\sigma}{\sigma_x \sqrt{n}},$ where $\sigma_x = \sqrt{\frac{\sum(x_i - \overline{x})^2}{n}}$ where $\sigma_x = \sqrt{\frac{\sum(x_i - \overline{x})^2}{n}}$ and s_x Essential Questions	Linear t-interval t-test statistic tions for simple linear regression: t-test statistic Parameters of Sampling Distribution Standard Error* of Sample Statistic $\mu_b = \beta$ $\sigma_b = \frac{\sigma}{\sigma_x \sqrt{n}}$, where $\sigma_x = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n}}$ where $s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n-1}}$ where $\sigma_x = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n}}$ and $s_x = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n-1}}$ Essential Questions	

Assessment Tasks

List of common formative and summative assessments.

Formative Assessment(s):

Common Formative Assessment – Ticket out the Door

Summative Assessment(s):

Common Summative Assessment – Unit 9 material is included in the Spring Semester Mock AP Exam

<u>Learning Experiences</u> Add additional rows below as needed.						
Objective or Content	Learning Experiences	Personalized Learning and Differentiation				
Stats Medic: Confidence Interval for Slope (Does seat location matter- Part 2?)	 Construct and interpret a confidence interval for the slope <i>B</i> of the population regression line. 	Graphic organizers are provided for each lesson and additional practice as needed. Some students will move through the task independently. Others will need prompts and support for understanding.				
Content Resources						
 The Practice of Statistics, 5th Edition Notes, Review, and Extra Practice provided on Schoology Stats Medic College Board AP Statistics Formula Sheet 						